
Supplemental Document

Shot noise limits on binary detection in
multiphoton imaging: supplement
AARON K. LAVIOLETTE AND CHRIS XU∗

School of Applied and Engineering Physics, Cornell University, Ithaca NY 14853, USA
∗cx10@cornell.edu

This supplement published with Optica Publishing Group on 20 October 2021 by The Authors
under the terms of the Creative Commons Attribution 4.0 License in the format provided by the
authors and unedited. Further distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Supplement DOI: https://doi.org/10.6084/m9.figshare.16802119

Parent Article DOI: https://doi.org/10.1364/BOE.442442



Shot Noise Limits on Binary Detection in 
Multiphoton Imaging: Supplemental Document

Supplementary Note 1
Here we show how Eq. (15) can be approximated using the Gaussian approximation. We 
consider the decision rule in Eq. (12), but we approximate 0p  and 1p  (an likewise 0c  and 1c ) 
as Gaussian probability (and cumulative) distributions, with means 0 B  , and 1 S B   , 
and variances, 2

0 B  , and 2
1 S B   . We note that in this case   is no longer restricted to 

an integer because the Gaussian distribution is not discrete. Thus without considering 
randomization for a moment, when the threshold   is to be used to do the classification (as is 
the case in Eq. (6)), then one can write
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where  ( ) 0.5erfc / 2x x    is the standard normal cumulative distribution function. Thus, 

it is possible to have arbitrary FP  and DP  without randomization, and so randomization is no 
longer employed (i.e., we can set q  arbitrarily in Eq. (12))  [1,2]. Thus, we have that DP  and 

FP  will be simily given by Eqs. (S1) and (S2), and so we have that the maximum DP  given a 

FP  is
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The AUC is then computed as
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The integral can be solved using Feynman’s trick and results in the approximation in Eq. (16).

Supplemental Note 2
Here we show how the signal calculations in section 3.1 are performed. We assume that the 
signal is determined by a diffraction limited focus, thus under the paraxial approximation we 
have that  [3]
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and,
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where ( ) ( ) 1( )/n n n
pg g f  is the nth order temporal coherence and ( )n

pg is a numerical 
parameter which is calculated based on the pulse shape. Here we have assumed that e  
(typically >100 m) is much greater than the axial resolution of the microscope (typically <10 
m). 

Due to our constraint on saturation, the repetition rate is calculated as  [3],
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where 0 ( )I t   is the time-average intensity at the focus, and pI  is the peak intensity at the 
focus, which can be written in terms of the saturation parameter, sat , as  [3],
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Thus, putting everything together one finds that,
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and
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We note from Eqs. (S9) and (S10), that small changes in sat  will not significantly affect 
the results. Since sat  is raised to the 1/2 and 2/3 for 2P and 3P excitation, respectively, the 
ratio of 3S  to 2S  is proportional to 1/6

sat . Therefore, exact knowledge of sat  is inconsequential 
for the comparison of 2P and 3P imaging quality performed in section 3.1 provided sat  is of 
reasonable values for typical imaging experiments.

Supplemental Figures

Fig. S1. Relative error between the AUC computed with 100 and 200 terms (defined as 
Poiss,100 Poiss,200 Poiss,200(AUC AUC ) / AUC )   is shown for the range of S  and B  in Fig. 1. The 

differences are negligible.



Fig. S2. (a) SBR as a function of depth used in Fig. 4. (b) Relative error between the AUC 
computed with 2000 and 3000 terms (defined as Poiss,2000 Poiss,3000 Poiss,3000(AUC AUC ) A/ UC )   is 

shown for the range of S  and B  in Fig. 4. The differences are negligible. Note also that the 2P 
and 3P lines are on top of each other.

Fig. S3. (a) SBR as a function of depth used in Fig. 5. (b) Relative error between the AUC 
computed with 2000 and 3000 terms (defined as Poiss,2000 Poiss,3000 Poiss,3000(AUC AUC ) A/ UC ) is 

shown for the range of S  and B  in Fig. 5. The differences are negligible. Note also that the 2P 
and 3P lines are on top of each other.

Fig. S4. Relative error between the eqz computed with 2000 and 3000 terms (defined as 

,Poiss ,2000 ,Poiss ,3000 ,Poiss ,3000)( z/z zeq eq eq )  is shown for the range of staining density in (a) Fig. 6a 

and (b) Fig. 6b. The differences are negligible.
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